合作客戶/
拜耳公司 |
同濟大學 |
聯合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關新聞Info
推薦新聞Info
-
> 強紫外線輻射對減縮劑抑制水泥石干縮變形效果研究(一)
> 無機粒子對TPAE界面張力、發泡、抗收縮行為的影響(四)
> 無機粒子對TPAE界面張力、發泡、抗收縮行為的影響(三)
> 無機粒子對TPAE界面張力、發泡、抗收縮行為的影響(二)
> 無機粒子對TPAE界面張力、發泡、抗收縮行為的影響(一)
> 弱堿三元采出液油水界面動態界面張力、強度、等特性研究
> 植保無人機噴頭和噴霧助劑對藥液表面張力、霧滴密度、覆蓋率的影響(二)
> 植保無人機噴頭和噴霧助劑對藥液表面張力、霧滴密度、覆蓋率的影響(一)
> 無人機噴霧作業下荔枝葉片上的表面張力、接觸角及霧滴沉積特性
> 不同界面張力-潤濕性組合的滲吸液體系對于化學滲吸效果的影響規律
時間效應在懸滴法測定表面張力中的影響
來源:日用化學工業 瀏覽 1422 次 發布時間:2022-12-08
葉丹妮,邢捷1,李紀暉,梁麗1,張豫紅,姚永毅
1.成都市科宏達新材料有限公司,四川成都610000
2.四川大學輕工科學與工程學院,四川成都610065
摘要
表面張力是流體重要的物理性質,測定表面張力的方法通常包括毛細管上升法、最大氣泡壓力法、拉環法、旋滴法和懸滴法等。目前,最普遍的表面張力的測定方法為國家標準推薦的平板法或拉環法。然而,懸滴法作為一項成熟的表面張力測定方法且具備靜態表面張力及動態表面張力測定功能,目前使用該法測定的較少。文章使用懸滴法測定較低含量的表面活性劑溶液靜態表面張力時發現結果與拉環法差異較大,而測定單組分液體及含量較大的表面活性劑溶液,懸滴法與拉環法的測定數據差異較小,這種情況的相關報道較少。另外,使用動態表面張力測定探索了靜態測定時出現差異的原因,并對應用懸滴法進行表面張力測定的適用范圍進行了總結。使用懸滴法測定表面張力時,應注意時間效應的影響。
流體的表面張力是表征流體性質的一個重要參數,測量流體的表面張力有多種方法[1]。國家標準中推薦使用平板法或拉環法,除國家標準推薦的方法以外,測量表面張力的常用方法還有毛細管上升法[2]、懸滴法[3]、滴體積法[4]、最大氣泡壓力法[5]、激光衍射法[6]等。
時間效應會對結果產生影響,根據測定結果與時間的關系,表面張力又可分為靜態表面張力與動態表面張力,靜態表面張力通常指在界面達到吸附平衡時的最低表面張力,常見的測定方法如拉環法[7]、平板法[8]、毛細管上升法、滴體積法等均可靜態測定。而動態表面張力是表面張力隨時間的變化趨勢,記錄的是表面活性劑在達到吸附平衡過程中每一時刻的表面張力值[9],是一組動態變化的值。測定動態表面張力的主要方法有懸滴法[10]、最大氣泡壓力法[11]、平板法[12]等。
懸滴法是利用滴外形測定表面張力的一種方法,基于數字成像技術,是一種現代的完全數字、計算機化的方法,是一種絕對的測量方法[13,14,15]。該種方法簡單、直觀、誤差小,往往只需準確校正圖像放大比例,且可同時評估靜態表面張力及動態表面張力。
懸滴法作為一種成熟的表面張力測定方法已被應用于靜態表面張力的測定中。本文研究發現:對于較低含量的表面活性劑溶液,使用懸滴法測定的靜態表面張力數據與拉環法所得結果差異較大,而這一狀況的相關報道較少。針對這一現象,本文采用懸滴法分別對單組分液體、不同表面活性劑溶液的表面張力分別進行了靜態及動態測定,并將靜態結果與國標推薦方法的測試結果進行了對比與分析,分析了不同測試方法結果間差異較大的原因,明確時間效應對于測定結果準確性的影響,并對懸滴法在表面張力中測定中的適用范圍進行了總結。
1實驗部分
1.1試劑與儀器
正庚烷,AR,四川西隴科學有限公司;無水乙醇,AR,四川西隴科學有限公司;十二烷基苯磺酸鈉(LAS),AR,四川科龍化工試劑廠;椰油酰胺丙基甜菜(CAB),AR,山東優索化工科技有限公司;十四烷基三甲基溴化銨(TTAB),AR,上海阿拉丁生化科技股份有限公司;脂肪醇聚氧乙烯醚-7(AEO-7),AR,山東優索化工科技有限公司。表面活性劑復配樣品(樣品A、樣品B、樣品C),由成都市科宏達新材料有限公司表面活性劑研究中心自行配制(至少含2種成分表面活性劑),作為盲樣供檢測室評測。實驗中溶液配制均以去離子水進行稀釋,含量以質量分數表示。實驗中涉及的試劑均采用分析純試劑,所使用水為去離子水,且符合3級實驗用水規格。
OCA 15EC視頻光學法接觸角測定儀,DataPhysics Instruments;BZY-2力學法表面張力測定儀,上海衡平儀器儀表廠。
1.2實驗方法
實驗中為了避免交叉污染及推進器因重力而自動下降,采用一次性標準1 mL注射器,外徑1.65 mm,內徑1.36 mm的標準針頭。將待測液吸入注射器中,排除氣泡后將其固定在自動注射液滴裝置上,調節自動注射液滴裝置兩端的位置螺母使針頭懸滴圖像基本處于軟件視野的最中央,然后調節攝像頭的焦距直到懸滴圖像清晰可見且輪廓銳利分明。視野中保留2~3 mm的針頭,作為實驗時擬合計算的標尺。溫度控制在(25±0.1)℃。整個實驗裝置采取較嚴格的減震措施,以穩定液滴圖像。
實驗中對表面張力的測定分為兩種方式:一是靜態測定,二是動態測定。靜態測定中,使用自動注射液滴裝置以0.5μL/s速度注射液滴,使液滴在針頭上呈現將落未落且液滴體積最大的狀態,截取此時的照片,使用軟件進行Young-Laplace擬合。每個樣品平行測定5次,取平均值作為最終數值。動態測定中,事先摸索試樣溶液在針頭上呈現將落未落且液滴體積最大時的液滴體積,然后調整滴液速度,在1 s內注射出最大液滴,以液體呈現最大體積的時間作為零點,持續記錄表面張力隨時間變化的過程。
圖1懸滴法裝置示意圖
Fig.1 Schematic diagram of the device of pendant drop method
2結果與討論
2.1單組分液體靜態表面張力測定
目前,使用懸滴法測定單組分液體的表面張力的記錄較多,但大多使用靜態測定,本文對不同測試方法間,單組分液體靜態表面張力的測定結果進行比較,所有方法按規范操作執行[16],測試溫度為25℃,平行測定5次取算數平均值作為最終數值,參考值來源于dataphysices OCA 15EC軟件中自帶數據參考庫,結果如表1所示。
表1單一液體不同方法間的靜態表面張力測定結果對比(25℃)
Tab.1 Comparison of the static surface tension of pure liquids between different methods(25℃)
上述結果表明,對于單組分液體的測定,無論是不易揮發液體如水,還是易揮發液體如正庚烷、無水乙醇,所列兩種方法靜態測定結果差距不大,偏差均小于0.5 mN/m,且與參考值接近。說明單組分液體使用懸滴法測定靜態表面張力的結果是準確可靠的。
另外,本文使用懸滴法對單組分液體的動態表面張力進行了測定分析,測定結果表明對于單組分液體而言,表面張力隨時間變化不大,基本處于穩定值。
2.2表面活性劑溶液靜態表面張力測定
對于溶液而言,表面活性劑的存在能顯著降低表面張力,本文研究了不同表面活性劑溶液,同一含量下,兩種方法測試結果的差異以及同一表面活性劑溶液,不同含量下兩種方法測試結果的差異。所有方法按規范操作執行,測試溫度25℃,平行測定5次取算數平均值,比較結果如表2所示。
表2表面活性劑復配溶液不同方法間靜態表面張力測定結果對比(25℃)
Tab.2 Comparison of the static surface tension of mixed surfactant solutions between different methods(25℃)
實驗結果表明,靜態表面張力測定中,對于較高含量表面活性劑溶液,懸滴法與國標推薦方法結果間差異不大但略微偏高,而對于較稀溶液的測定,懸滴法與推薦方法間差異較大,究其原因,可能是與表面活性劑分子在表面的排布緊密程度相關。
表面活性劑的分子結構具有兩性,一端為親水基團,另一端為疏水基團,在溶液的表面能定向排列。當表面活性劑分子在氣-液界面排列越緊實,疏水基團會盡可能地與氣-液界面垂直,將疏水端更多地暴露于空氣中,更有效地降低表面張力[17]。而排列的緊實程度又與溶液的含量、表面活性劑結構和溶液表面的吸附快慢等相關。溶液表面與本體含量存在明顯的梯度差,而表面活性劑在溶液表面具有較強的吸附作用。對于吸附速度較快的表面活性劑分子,在液滴形成的過程中,迅速分布于表面,在氣-液界面排布緊密,能快速降低表面張力,所以測定結果與國標法基本吻合;而對于吸附較慢的表面活性劑分子,在液滴形成的過程中,表面活性劑分子移動緩慢,在形成完整液滴之時吸附未達到平衡,在氣-液界面排布較為松散,未能有效地降低表面張力,所以測得結果普遍偏高,甚至與純水無異。為了證明這一點,實驗采取注射液滴后將液滴懸置5 min后測定,測定后以0.5μL/s滴加速度進行連續測定,結果如圖2所示。
圖2連續滴液過程中液滴順序對表面張力的影響
Fig.2 Influence of droplet sequence on surface tension during continuous droplet dropping
結果表明,液滴懸置5 min后,第一滴液滴表面張力值最小,隨著連續滴定的進行,液滴表面張力值逐漸增大,最終趨于平衡。究其原因,可能是由于懸置一段時間后,表面活性劑分子在表面充分吸附,所以第一滴液滴表面張力最小,而隨著連續滴定進行,由于平衡時間較短,表面活性劑分子在液滴的表面吸附未達平衡,所以數值逐漸增大,然而滴加液滴的速度一定,表面活性劑分子在表面的遷移速率一定,降低表面的能力與效率一定,最終會達到一個穩定值。而平衡時間的長短,與表面活性劑分子的性質有關,遷移吸附速率快的表面活性劑分子所需時間較短。由此可見,使用懸滴法測定表面張力時,時間效應的影響不可忽略。
2.3動態表面張力測定
為了充分證明時間效應對懸滴法測定結果會造成影響,實驗使用懸滴法對A,B,C三種表面活性劑復配溶液較稀含量下的動態表面張力進行了研究。結果如圖3所示。
圖3不同含量的A,B,C三種復配型表面活性劑溶液的動態表面張力圖
Fig.3 Dynamic surface tension curves of mixed surfactant solutions(A,B,C)with different content
結果表明,在動態表面張力曲線圖中,A,B,C三種樣品在60 mg/kg的較低含量下,表面張力均呈現先快速降低而后緩慢降低最終達到平衡的趨勢,表明表面活性劑分子在液滴表面上確實存在著隨時間變化逐漸吸附平衡,排列完整的現象,如圖4所示,表面活性劑分子在表面完全吸附、排列緊密需要一定的時間,顯然在使用懸滴法進行測定時,時間效應直接影響著表面張力測定的誤差大小,符合前文所述結論。而樣品B在100 mg/kg含量下,動態表面張力趨勢圖成一條直線,證明該種表面活性劑在液滴表面遷移速度較快,在液滴完全注射形成之前已快速到達平衡狀態,表面活性劑分子在表面得以充分排布,這解釋了較低含量的表面活性劑溶液的靜態表面張力與國標推薦方法吻合程度差異較大的原因。這是由表面活性劑分子自身性質所決定的,與其極性基的類型、結構、個數、疏水基長度等息息相關。而單一液體,未具有含量差,故不存在表面活性劑分子從溶劑內部遷移吸附至表面這一過程,所以其動態表面張力曲線呈現為平穩直線。
綜上所述,時間效應對懸滴法測定的表面張力的準確性影響較大,對于降低表面張力效率較低樣品,尤其在較低含量下,在使用懸滴法進行測定的時候,為避免測定結果遠高于拉環法數值,應考慮時間效應的影響,建議使用動態表面張力測定而非靜態表面張力測定。
圖4表面活性劑分子在液滴上的遷移排布示意圖
Fig.4 Schematic diagram of migration and arrangement of surface active molecules on droplets
3結論
本文采用懸滴法對單組分液體、表面活性劑溶液的表面張力進行了靜態及動態測定,并將靜態結果與國標推薦方法結果進行了對比與分析。結果表明,對于高含量表面活性劑溶液及單一液體,懸滴法靜態結果與國標推薦方法結果基本吻合,而對于較低含量的表面活性劑復配溶液或者降低表面效率較低的樣品,采用懸滴法測定時,應盡量采取動態表面張力測定,這樣平衡值的結果更接近于國標法結果,也能同時表征表面活性劑降低表面的能力與效率,即應用懸滴法測定表面張力應注意時間效應對于表面張力測定準確性的影響。
懸滴法作為一種成熟的測定方法已被應用于表面張力的測定中,目前的研究大多集中在單一液體測定,且多數為靜態測定。而在實際應用當中,表面活性劑溶液為多組分復配體系,且有時需要在較低含量下快速降低表面張力。因此,在此類研究中,使用懸滴法研究表面活性劑復配體系的表面張力變化的動態規律顯得十分必要。而懸滴法作為操作簡便、用樣量少、測定快速、結果準確的方法,同時具備靜態表面張力及動態表面張力測定也必將應用于更廣泛的區域。