合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國(guó)保潔 |
美國(guó)強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> ?正十六烷與七甲基壬烷的界面張力
> 低分子熱塑性樹(shù)脂體系CBT500/DBTL的界面張力與溫度的關(guān)聯(lián)性(一)
> 最大氣泡壓力法表面張力的測(cè)量原理
> 化學(xué)學(xué)得好,杯子刷的更干凈?
> 表面張力對(duì)液滴形變的影響規(guī)律
> 低溫β-甘露聚糖酶提升低溫油藏壓裂液的破膠性能——摘要
> 各類塑料薄膜的表面張力特定范圍一覽
> 氟碳-碳?xì)浔砻婊钚詣?fù)配體系表面張力變化規(guī)律與影響因素
> 超微量天平應(yīng)用實(shí)例:利用火試金法測(cè)定鉛精礦中銀含量
> 表面張力與粗糙度的關(guān)系
推薦新聞Info
-
> 量化改進(jìn)差分毛細(xì)管法測(cè)試高溫液態(tài)瀝青表面張力精度(下)
> 量化改進(jìn)差分毛細(xì)管法測(cè)試高溫液態(tài)瀝青表面張力精度(上)
> 連接基對(duì)3種表面活性劑GSS271、GSS371和GSS471動(dòng)態(tài)表面性能的影響(下)
> 連接基對(duì)3種表面活性劑GSS271、GSS371和GSS471動(dòng)態(tài)表面性能的影響(上)
> 高鹽油藏下兩性/陰離子表面活性劑協(xié)同獲得油水超低界面張力的方法(三)
> 高鹽油藏下兩性/陰離子表面活性劑協(xié)同獲得油水超低界面張力的方法(二)
> 高鹽油藏下兩性/陰離子表面活性劑協(xié)同獲得油水超低界面張力的方法(一)
> 棕櫚酸酯淀粉糊液理化性質(zhì)及替代洗衣粉配方中的LAS去污系數(shù)研究(三)
> 棕櫚酸酯淀粉糊液理化性質(zhì)及替代洗衣粉配方中的LAS去污系數(shù)研究(二)
> 棕櫚酸酯淀粉糊液理化性質(zhì)及替代洗衣粉配方中的LAS去污系數(shù)研究(一)
篩選常用、經(jīng)濟(jì)且可抑制低階煤煤塵的表面活性劑(二)
來(lái)源:西安科技大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版) 瀏覽 77 次 發(fā)布時(shí)間:2024-11-26
2、煙煤性質(zhì)分析
煙煤中的無(wú)機(jī)物質(zhì)、有機(jī)物質(zhì)組成及粒徑分布會(huì)直接影響煤塵的物理及化學(xué)性質(zhì),從而影響其潤(rùn)濕性。
2.1煤塵粒徑分布
利用激光粒度分析儀對(duì)實(shí)驗(yàn)用的煤塵粒徑分布特征測(cè)試,結(jié)果見(jiàn)表2。
由表2可以看到,實(shí)驗(yàn)用的煙煤粒徑較小,可吸入塵所占比例較高,粒徑在10μm以下煤塵的累積量超過(guò)34.8%,粒徑在2.5μm以下的煤塵累積量超過(guò)了11.7%,對(duì)井下礦工的職業(yè)健康安全有較大威脅。此外,有研究表明,煤塵粒徑分布特征會(huì)影響煤塵潤(rùn)濕性,煤塵粒徑越小,煤塵表面越容易與空氣形成一層“氣膜”將其包裹,而水的表面張力較高,較難取代空氣后在煤塵表面鋪展,因此實(shí)驗(yàn)所用煤塵較難被水直接潤(rùn)濕。
2.2煤塵工業(yè)分析和元素分析
根據(jù)GB/T 212—2008《煤的工業(yè)分析方法》和GB/T 31391—2015《煤的元素分析方法》對(duì)實(shí)驗(yàn)用煤煤樣進(jìn)行工業(yè)和元素分析,結(jié)果見(jiàn)表3。
從煤樣的工業(yè)分析可以看出,該煙煤中的水分及灰分等無(wú)機(jī)組分含量都較低,分別僅占872%和2.71%,煤塵的潤(rùn)濕性較差。而揮發(fā)分含量高達(dá)33.72%,說(shuō)明該煙煤煤樣容易揮發(fā)出甲烷、乙烯、乙炔等氣體,表面存在大量性質(zhì)活潑、穩(wěn)定性差的有機(jī)物質(zhì),容易阻擋溶液對(duì)煤塵的潤(rùn)濕。從元素分析中可以看到,煤塵元素中煤樣中的固定碳含量為54.85%,說(shuō)明煤化程度較低,該煙煤的氧碳比和氫碳比分別僅為0.16和0.06,低的氧碳比和氫碳比也不利于煤塵被潤(rùn)濕。因此,可以推斷該煤樣較難被水直接潤(rùn)濕,必須加入表面活性劑作為添加劑提高煤塵潤(rùn)濕性。
3、實(shí)驗(yàn)結(jié)果與分析
3.1表面活性劑溶液的表面張力
表面張力通常用來(lái)描述液體與空氣的性質(zhì)差異,差異越小,表面張力也越小,煤塵與溶液接觸時(shí)能障越小,越有利于煤塵進(jìn)入溶液。
3.1.1濃度對(duì)表面活性劑溶液表面張力的影響
在25℃條件下,測(cè)定溶液表面張力隨濃度變化的結(jié)果如圖1所示。純水的表面張力為73.48 mN/m。
由圖1可以看出,向水中加入實(shí)驗(yàn)所選取的8種表面活性劑,都能有效降低溶液表面張力。8種表面活性劑溶液的表面張力隨濃度的增大先增大,達(dá)到臨界膠束濃度后趨于穩(wěn)定,此時(shí)的表面張力稱為臨界膠束濃度時(shí)的表面張力,用于衡量表面活性劑降低表面張力的能力,也是評(píng)價(jià)溶液表面活性的重要指標(biāo)。8種表面活性劑均可在較低濃度下,快速降低溶液表面張力,當(dāng)表面活性劑濃度為0.05 g/L,8種溶液的表面張力降至25.43~46.76 mN/m,當(dāng)濃度為0.2 g/L時(shí),8種溶液的表面張力降至25.22~40.64 mN/m,當(dāng)濃度為2.0 g/L時(shí),8種溶液的表面張力均降至35 mN/m以下,比自來(lái)水的表面張力下降了一倍多。但同一濃度下,8種表面活性劑降低表面張力的能力存在一定差異,當(dāng)濃度為0.1 g/L時(shí),APG溶液表面張力為25.41 mN/m,比自來(lái)水下降了6542%,而SDBS溶液表面張力為45.82 mN/m,只比自來(lái)水下降了不足40%。
3.1.2表面活性劑性質(zhì)對(duì)表面張力的影響
圖2分別是8種表面活性劑溶液表面張力隨濃度的變化曲線,在曲線上作出兩條直線,一條與發(fā)生突變前的曲線相切,另一條與發(fā)生突變后的曲線相切,在交叉點(diǎn)得到其臨界膠束濃度及表面張力。
由圖2可見(jiàn),8種表面活性劑溶液表面張力隨濃度變化的趨勢(shì)大體上相同,但其臨界膠束濃度及表面張力有較大差別。溶液臨界膠束濃度越小,說(shuō)明表面活性劑分子在溶液中形成膠束的能力越強(qiáng)。8種表面活性劑的臨界膠束濃度主要集中在濃度為0.1~0.4 g/L左右,其中APG的臨界膠束濃度最小為0.04 g/L,SDBS的最大為0.53 g/L,8種表面活性劑形成膠束能力由強(qiáng)到弱排序?yàn)椋篈PG>BS-12>1631>OA-12>JFC>DTAB>AOT>SDBS,總體呈現(xiàn)出兩性型>非離子型>陽(yáng)離子型>陰離子型的規(guī)律。溶液的γcmc值越小,表面活性劑降低表面張力的能力越強(qiáng),陰離子和非離子型的4種表面活性劑γcmc值均較低,其中APG降低表面張力能力最強(qiáng),γcmc值僅為25.61 mN/m,比水降低了65.15%。而陽(yáng)離子和兩性型的表面張力較高,均在31.00 mN/m以上,1631降低表面張力的能力最弱,表面張力為34.79 mN/m。8種表面活性劑降低表面張力的能力由強(qiáng)到弱依次排序如下:APG>JFC>AOT>SDBS>OA-12>CTAB>BS-12>1631,總體而言,非離子型>陰離子型>兩性型>陽(yáng)離子型。APG的臨界膠束濃度和表面張力都最低,這可能是因?yàn)锳PG分子為環(huán)狀結(jié)構(gòu),環(huán)狀結(jié)構(gòu)的碳原子上連接有醇羥基,這些醇羥基與水分子之間存在強(qiáng)相互作用,且在水溶液中溶解度很高,因此有效降低了溶液的表面張力,也更易形成膠束。
表面活性劑溶液的表面張力與濃度及自身性質(zhì)密切相關(guān)。在達(dá)到臨界膠束濃度之前,溶液濃度越大,表面張力越小。在8種表面活性劑中,陽(yáng)離子及兩性型表面活性劑雖然具有較低的臨界膠束濃度,但是降低表面張力的能力較差;陰離子表面活性劑的臨界膠束濃度值最高,但在降低溶液表面張力方面性能優(yōu)越;非離子表面活性劑APG形成膠束能力、降低表面張力能力均為最強(qiáng)。